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Abstract

This paper proposes modified versions of the Sharpe ratio and Jensen’s alpha
which are appropriate in a simple continuous-time model. Both are derived
from optimal portfolio selection. The modified Sharpe ratio equals the or-
dinary Sharpe ratio plus half of the volatility of the fund. The modified
alpha also differs from the ordinary alpha by a second-moment adjustment.
The modified and the ordinary Sharpe ratios may rank funds differently. In
particular, if two funds have the same ordinary Sharpe ratio, then the one
with the higher volatility will rank higher according to the modified Sharpe
ratio. This is justified by the underlying dynamic portfolio theory. Unlike
their discrete-time versions, the continuous-time performance measures take
into account the fact that it is optimal for investors to change the fractions
of their wealth held in the fund versus the riskless asset over time.



1 Introduction

This paper proposes and analyzes modified versions of the Sharpe ratio and
Jensen’s alpha which are derived from optimal portfolio selection in a simple
continuous-time model.

The ordinary Sharpe ratio was proposed by Sharpe (1966) and is much used
by practitioners. It is the ratio between expected or average excess return
and risk, where risk is measured as standard deviation of return.

According to static mean-variance portfolio theory, if investors face an ex-
clusive choice among a number of funds, then they can unambiguously rank
them on the basis of their Sharpe ratios. A fund with higher Sharpe ratio
will enable all investors to achieve a higher expected utility.

The modified or instantaneous Sharpe ratio is effectively the same as the
discrete Sharpe ratio, except that the rates of return over finite time intervals
replaced by instantaneous rates of return.

We show that if investors face an exclusive choice among a number of funds,
each of which has constant instantaneous Sharpe ratio, and if they are able
to dynamically reallocate wealth between their chosen fund and a money
market account, then they can unambiguously rank the funds on the basis
of their instantaneous Sharpe ratios. A fund with a higher instantaneous
Sharpe ratio will enable all investors to achieve a higher expected utility.

The assumption of constant instantaneous Sharpe ratios is obviously restric-
tive, but it does allow the volatilities and expected excess returns of the
funds to be changing stochastically over time. So long as a fund invests in
an underlying portfolio which has constant instantaneous Sharpe ratio, it
may well engage in a dynamic strategy with respect to the fraction of asset
value invested in the portfolio and the fraction invested in the riskless asset,
or the degree of leverage employed. If the underlying portfolio has constant
volatility, then the fund may also engage in a strategy which involves buying
and selling contingent claims such as put and call options on the portfolio.

Even though our linkage of expected utility maximization and the instanta-
neous Sharpe ratio allows for dynamic strategies, it does not contradict the
concerns about gaming of the Sharpe ratio expressed, for example, in Goet-
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zman et. al. (2002). That paper applies the Sharpe ratio to zero-investment
strategies, and to a fairly general model of returns distributions, where max-
imizing the Sharpe ratio is not necessariliy in the best interest of the fund’s
investors. By contrast, we assume a positive investment, and we limit the re-
turns distributions under consideration to those for which we can establish a
theoretical foundation for the instantaneous Sharpe ratio based on expected
utility maximization.

In the case where the value of a fund has constant volatility, we can compare
the instantaneous Sharpe ratio with a discrete Sharpe ratio calculated from
continuously compounded rates of return. It turns out that the instantaneous
Sharpe ratio equals the discrete Sharpe ratio plus half of the volatility of the
fund.

Unlike the assumption of a constant instantaneous Sharpe ratio, the assump-
tion of a constant volatility rules out various dynamic strategies and option
strategies on the part of the fund manager.

Moreover, under the joint assumption of constant volatility and constant
instantaneous Sharpe ratio, the excess returns are IID, and the standard
estimation theory for the Sharpe ratio derived by Lo (2002) applies. Lo
shows that care must be taken in estimating the Sharpe ratio when returns
are not IID, such as for example when they are autocorrelated.

The relative size of the volatility adjustment to the Sharpe ratio does not
depend on whether returns are expressed per day, per month, or per year.
The same is true of the ranking of portfolios produced by the instantaneous
Sharpe ratio.

The fact that the instantaneous Sharpe ratio differs from the discrete Sharpe
ratio by half of the volatility of the fund implies that the discrete and in-
stantaneous Sharpe ratios may well produce different rankings of funds. The
instantaneous Sharpe ratio does not penalize fund managers as much for
taking risks as the discrete ratio does. In particular, if two funds have the
same discrete Sharpe ratio but different volatilities, then the fund with higher
volatility will be the better performer.

The intuition behind this result is that the static one-period theory on which
the discrete Sharpe ratio is based overestimates the riskiness of high-volatility
funds, because it does not take into account the investors’ ability to change
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the fraction of their wealth allocated to the fund over time.

The instantaneous Sharpe ratio does not reward the fund manager for taking
risks without regard to the expected rate of return. If he increases the volatil-
ity of the fund, then he has to raise the instantaneous excess rate of return
at least proportionally in order to keep the same instantaneous Sharpe ratio,
and he has to raise the instantaneous excess return more than proportionally
in order to increase the instantaneous Sharpe ratio.

If either the ordinary or the instantaneous Sharpe ratio is used to make
statements about whether funds on average have higher Sharpe ratio than a
benchmark, then it is subject to survival bias. This issue pertains equally to
ordinary and to instantaneous Sharpe ratios. However, if the Sharpe ratios
are used to rank funds, then survival bias should not be an issue.

Jensen’s alpha was proposed by from Jensen (1968, 1969) and is used both
by practitioners and by academics.

In order to construct a version of Jensen’s alpha which is appropriate in
continuous time, we need to interpret it in terms of optimal portfolio choice.
If an investor identifies a fund which has a positive alpha, then what exactly
does that tell him about how to maximize his expected utility? The literature
seems to have been silent on this point, although the following answer is not
surprising.

Suppose the investor initially holds a combination of the riskless asset and an
index portfolio. He considers whether to tilt his portfolio holdings towards
an actively managed fund by investing a small proportion of his wealth in
it. He should do so only if it raises his expected utility, and hence, only if it
raises the Sharpe ratio of his overall portfolio. We show that Jensen’s alpha
is proportional to the first derivative of the overall Sharpe ratio with respect
to the proportion invested in the active fund. Hence, a positive alpha means
that the investor can increase his expected utility by investing at least a small
amount in the fund.

This relation between Jensen’s alpha and the Sharpe ratio holds in a dynamic
model as well as in a static model. In a dynamic model, the relevant version
of alpha is the instantaneous alpha. It is effectively the same as the discrete
alpha, except that in calculating it, the rates of returns over finite time
intervals are replaced by instantaneous rates of return. We show that the
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instantaneous alpha is equal to the discrete alpha plus half the variance of
the portfolio minus half the covariance of the portfolio with the benchmark.

The rest of the study is organized as follows. Section 2 shows how the
instantaneous Sharpe ratio can be used as a performance criterion. Section 3
derives the relation between the instantaneous and the discrete Sharpe ratio.
Section 4 derives the explicit relation between Jensen’s alpha and the Sharpe
ratio. Section 5 discusses the instantaneous Jensen’s alpha and its relation
to the discrete Jensen’s alpha. We conclude in Section 6.

2 The Instantaneous Sharpe Ratio

The discrete Sharpe ratio of a portfolio is the ratio between the expected
excess rate of return and the volatility:

S =
Erp − rf√
var(rp)

where rp is the rate of return on the portfolio, and rf is the riskless rate.

In this section, we define the instantaneous Sharpe ratio and show that it
unambiguously ranks funds in a continuous-time setting for expected utility
maximizing investors who invest in one fund and in the riskless asset.

For a general introduction to continuous time finance models, see Nielsen
(1999). There is an instantaneously riskless asset with value

M(t) =M(0) exp
{∫ t

0
r ds

}

where r is the instantaneously riskless interest rate. The value process F of
a portfolio or fund, with dividends reinvested, is assumed to be a positive Itô
process with differential

dF

F
= µ dt+ σ dW

where µ is the instantaneous expected rate of return, and σ is the K-
dimensional row vector of instantaneous relative dispersion coefficients. The
volatility of the fund will be

√
σσ�. It is assumed to be positive.
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The instantaneous Sharpe ratio of the fund, denoted by Sinst, is defined as

Sinst =
µ− r√
σσ�

We shall assume that the investor chooses one fund and then splits his wealth
between this fund and the money market account. The way in which he splits
it may change over time in response to new information. In other words, he
implements a portfolio strategy, which in this context is a one-dimensional
process q. The interpretation is that he puts the fraction q of his wealth in
the fund and 1 − q in the money market account. If q > 1, then he uses
leverage. The resulting wealth process V has dynamics

dV

V
= (q(µ− r) + r) dt+ qσ dW

We assume a finite time horizon [0, T ]. The investor chooses q so as to
maximize his expected utility of final wealth V (T ).

Proposition 1 below is the theoretical foundation for using the instantaneous
Sharpe ratio for performance measurement in a dynamic framework. It says
that an investor who splits his wealth between a money market account and a
fund can get a higher expected utility the higher is the instantaneous Sharpe
ratio of the fund that he chooses, provided that the interest rate varies in a
deterministic manner and that the instantaneous Sharpe ratios of the funds
under consideration are constant.

It follows that if the investor is choosing one and only one among a number
of funds, each of which has a constant instantaneous Sharpe ratio, then he
will prefer the one which has the highest instantaneous Sharpe ratio. In
this sense, the instantaneous Sharpe ratio can be used to rank funds in the
dynamic framework exactly like the discrete Sharpe ratio in a static model.

Proposition 1 Suppose the interest rate r is deterministic. Consider two
funds whose price processes F1 and F2 have differentials

dFi

Fi
= µi dt+ σi dW

for i = 1, 2. Suppose the instantaneous Sharpe ratios

Sinst,i =
µi − r√
σiσ

�
i
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i = 1, 2, are positive constants. Given the investor’s utility function, the
maximum expected utility he can get from a portfolio strategy which involves
only the fund F1 and is adapted to F is strictly larger than the maximum
expected utility he can get from a portfolio strategy which involves only the
fund F2 and is adapted to F , if and only if Sinst,1 > Sinst,2.

The proof of Proposition 1 is in the appendix. It is not entirely simple, for
several reasons: (1) the Wiener process W is potentially high-dimensional,
which allows the two funds to be less than perfectly instantaneously corre-
lated, (2) the investor’s trading strategy may in principle be contingent on
much more information than just observing the value of the fund he is trad-
ing, and (3) the relative dispersion vector σi of the fund may be stochastically
time-varying.

Proposition 1 assumes that the instantaneous Sharpe ratios are constant, but

it does not assume that the volatilities
√
σiσ�

i or the excess returns µi − r
are constant. This has two important implications.

First, so long as a fund invests in an underlying portfolio which has con-
stant instantaneous Sharpe ratio, it may well engage in a dynamic strategy
with respect to the fraction of asset value invested in the portfolio and the
fraction invested in the riskless asset. These fractions may be stochastically
time-varying and may involve leverage. For example, the fund may follow a
strategy of “doubling up,” or increasing its bets when it suffers losses. Such
strategies do not affect the instantaneous Sharpe ratio, so the fund will still
have constant instantaneous Sharpe ratio.

Secondly, the fund may engage in a strategy which involves buying and sell-
ing contingent claims on the underlying portfolio, at least if the latter has
constant volatility. If the portfolio has constant volatility, then it conforms
to the dynamics underlying the Black–Scholes model, and the excess return
and volatility of a contingent claim equals the claim’s elasticity times the
excess return and volatility, respectively, of the portfolio. See Nielsen (1999),
Chapter 6, Section 6.2. Hence, the instantaneous Sharpe ratio of the claim
equals the instantaneous Sharpe ratio of the underlying portfolio. The fund
will have stochastically time-varying excess return and volatility, but since all
the contingent claims are perfectly correlated with the underlying portfolio
and have the same constant instantaneous Sharpe ratio, the fund also has
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that same constant instantaneous Sharpe ratio.

3 Discrete and Instantaneous Sharpe Ratios

In this section, we derive a relation between the instantaneous Sharpe ratio
and the discrete Sharpe ratio.

We need some manageable assumption about the volatility in order to cal-
culate the ordinary Sharpe ratio. The simplest assumption that will do is
constant volatility. Hence, we assume that the volatility σ and the expected
instantaneous excess rate of return µ− r of the fund are constant. This im-
plies that the instantaneous Sharpe ratio of the fund will be constant. Like in
Proposition 1, we assume that the interest rate r is deterministic. Although
the expected instantaneous excess return µ − r is constant, the expected
instantaneous return µ itself may not be constant.

The continuously compounded rate of return rf on the money market account
over the time interval [t, t+ τ ] is

rf = lnM(t+ τ)− lnM(t) =
∫ t+τ

t
r ds

It is deterministic.

Since we are now considering only one fund at a time, we can assume that
the Wiener process is one-dimensional and that σ is one-dimensional.

The mean of the continuously compounded rate of return rp on the portfolio
over the time interval [t, t+ τ ] is

Erp = rf +mτ

where

m = µ− r − 1

2
σ2

The variance is σ2τ , and the standard deviation is σ
√
τ .

The discrete Sharpe ratio is the ratio between the mean and standard devi-
ation of excess rates of return over a discrete period. If the rates of return

7



are expressed as continuously compounded rates per period of length τ , then
the discrete Sharpe ratio is

Erp − rf√
var(rp)

=
mτ

σ
√
τ
= S

√
τ

where
S =

m

σ
is the discrete Sharpe ratio based on continuously compounded annualized
rates.

By substituting the definition of m into the definition of the instantaneous
Sharpe ratio, we find the relation between the discrete Sharpe ratio and the
instantaneous Sharpe ratio:

Sinst =
µ− r

σ
=
m+ 1

2
σ2

σ
= S +

1

2
σ

So, the instantaneous Sharpe ratio differs from the discrete Sharpe ratio by
a bias equal to σ/2. This bias of course comes from the difference of σ2/2
between the instantaneous mean excess return µ − r and the discrete mean
excess return m.

It is important to recognize that (1) while the discrete and instantaneous
Sharpe ratios do depend on whether returns are expressed per day, per month,
or per year, the ranking of portfolios that they produce does not, (2) the
relative size of the bias does not depend on whether returns are expressed
per day, per month, or per year, and (3) when the Sharpe ratios are estimated
from data, the importance of the bias is independent of the frequency of the
data.

To make points (1) and (2), we calculate the instantaneous and discrete
Sharpe ratios for returns expressed per period of length τ , and then we
express the bias as a fraction of the discrete Sharpe ratio.

Observe that the definition of the instantaneous Sharpe ratio as

Sinst =
µ− r

σ

is based on instantaneous returns per period of length one, say one year. The
instantaneous Sharpe ratio corresponding to rates of return per time period

8



of length τ is
µτ − rτ

σ
√
τ

= Sinst

√
τ = S

√
τ +

1

2
σ
√
τ

It is clear that the rankings of funds produced by Sinst

√
τ and S

√
τ are

independent of τ , which was point (1).

The size of the bias is

Sinst

√
τ − S

√
τ =

1

2
σ
√
τ

which of course goes to zero as the length τ of the time interval goes to zero.
However, expressed as a fraction of the discrete Sharpe ratio S

√
τ , the bias

is
Sinst

√
τ − S

√
τ

S
√
τ

=
Sinst − S

S

which is independent of τ . This was point (2).

The relative bias can also be written as

Sinst

√
τ − S

√
τ

S
√
τ

=
µ− r −m

m
=
µτ − rτ −mτ

mτ

It equals the difference between the instantaneous and the discrete expected
excess return per period of length τ , expressed as a fraction of the discrete
expected excess return.

Finally, (3) if the Sharpe ratios are estimated from data, then the quality of
the estimate will of course be better the more data is used, and in particular,
the higher the frequency of the data. However, the true underlying values of
the ratios are unaffected, provided that they are expressed in terms of returns
per period of a fixed length, such as a year, independently of the sampling
frequency.

When estimating the instantaneous Sharpe ratio, we have to take into ac-
count the fact that while the parameters µ and σ refer to instantaneous
returns, we can actually only observe returns over discrete time periods such
as days, weeks, months or years. The equation

Sinst =
m+ 1

2
σ2

σ
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has the virtue of expressing the instantaneous Sharpe ratio in terms of dis-
crete time moments of the rates of return, since m is the expectation of the
annualized discrete time rate of return and σ is the standard deviation.

The fact that the instantaneous Sharpe ratio equals the discrete Sharpe ratio
plus half of the volatility of the fund implies that the ranking of funds based
on the discrete and the instantaneous Sharpe ratios may well be different. In
particular, if two funds have the same discrete Sharpe ratio but one has higher
volatility than the other, then they will be ranked as equal by the discrete
Sharpe ratio while the one with higher volatility will be ranked higher by
the instantaneous Sharpe ratio. In other words, given the mean annualized
excess rate of return m, the instantaneous ratio penalizes the fund manager
less than does the discrete ratio for taking risk in the form of volatility.
The fund with higher volatility will enable the investor to achieve a higher
expected utility.

The intuition behind this result is that the static one-period theory on which
the discrete Sharpe ratio is based overestimates the riskiness of high-volatility
funds, because it does not take into account the investors’ ability to change
the fraction of their wealth allocated to the fund over time.

Take as an example an investor who wants to hold 50 percent of his wealth in
the fund and 50 percent in the riskless asset, and whose investment horizon
T is one year. In the static framework, he initially invests half of his money
in the fund and half in the riskless asset, and then he waits for a year to see
what happens. However, already after a month, the value of the fund may
have gone up so that he actually holds 60 percent in the fund and only 40
percent in the riskless asset. During the course of the year, this situation
may be further exacerbated.

By contrast, in the dynamic framework, the investor will immediately react
to the increase in the value of the fund by selling some of it and investing
the proceeds in the riskless asset, so that he always holds exactly 50 percent
in each. This lowers the overall riskiness of his strategy. The difference is
reflected in the modification of the Sharpe ratio.

The fact that the instantaneous Sharpe ratio penalizes the fund manager less
for taking risk does not mean that it rewards him for taking risks without
regard to the expected rate of return. If he increases the volatility of the
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fund, then he has to raise the instantaneous excess rate of return µ − r at
least proportionally in order to keep the same instantaneous Sharpe ratio.

To improve its instantaneous Sharpe ratio, and thereby improve its relative
ranking, the fund has to increase its instantaneous excess return more than
proportionally to any increase in its volatility.

4 Jensen’s Alpha

There are various versions of Jensen’s alpha, corresponding to different asset
pricing models. Here we will only discuss the original Jensen’s alpha, which
corresponds to the mean-variance CAPM, and its continuous-time modifica-
tion.

The usual interpretation of alpha is that it is a risk-adjusted performance
measure which adjusts expected or average returns for beta risk. However,
this interpretation does not explicitly relate alpha to optimal portfolio choice
or say precisely what an investor should do if he identifies one or more funds
with positive alpha.

This section gives an interpretation of Jensen’s alpha in terms of portfolio
optimization and explains the relation between Jensen’s alpha and the Sharpe
ratio.

The rates of return in the formulas to follow can be interpreted either as
rates of return over discrete time periods, as will be appropriate in a static
model, or as instantaneous rates of return, for use in a dynamic model. The
expectations, variances, and covariances should be interpreted accordingly.

Jensen’s alpha of a portfolio, relative to an index or benchmark x, is defined
as

α = Erp − rf − β(Erx − rf )

where rf is the riskless rate, rp and rx are the rates of return on the portfolio
p and on the index x, and

β =
cov(rp, rx)

var(rx)

is the beta of the portfolio with respect to the index.
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If indeed the index x is efficient, then the true alpha of every security and
every portfolio will be zero, although of course an estimated alpha may be
different from zero because of estimation error. However, alpha can be calcu-
lated and be given a precise interpretation in terms of portfolio optimization
even if the index is not efficient.

Suppose the investor initially holds a combination of the riskless asset and
an index portfolio tracking the index x, in proportions 1− ν and ν. He now
considers whether to tilt his portfolio a little bit in the direction of the fund
p. In other words, he considers taking a small fraction ε of his wealth and
investing it in the portfolio p, while reducing the fractions held in the riskless
asset and the index to (1− ε)(1− ν) and (1− ε)ν respectively.

Let S(ε) denote the Sharpe ratio (or instantaneous Sharpe ratio) of the new
portfolio.

Proposition 2 The derivative of S(ε) with respect to ε, evaluated at ε = 0,
is

S ′(0) =
α

ν
√
var(rx)

The proof of Proposition 2 is in the appendix.

Proposition 2 leads to the following interpretation of alpha.

If α > 0, then an investor who basically invests in the index or in a combi-
nation of the index and the riskless asset can increase his Sharpe ratio and
hence his expected utility by investing a small positive amount in the fund
p. Of course, if α < 0, then he can achieve the same effect by short-selling
the fund, if this is possible.

When ε varies, the standard deviation and mean of the investor’s entire
portfolio traces out a hyperbolic curve, which is in fact the risky portfolio
frontier generated by two assets, the initial portfolio and the fund p.

We illustrate this frontier in Figure 1, where α > 0. The frontier should not
be confused with the usual frontier constructed from all available securities.

When ε = 0, we are at the point y. As ε increases, we move up along the upper
branch of the small hyperbola. The Sharpe ratio S(ε) is initially increasing
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Figure 1: The frontier generated by the index and the fund.

and then decreasing. It has a maximum point ε̄ > 0, which represents the
optimal fraction of wealth to take out of the initial portfolio and put into the
fund p. It corresponds to the point ε̄p+ (1− ε̄)y in the figure.

It is alternatively possible that S(ε) does not have a maximum but is in-
creasing for all ε > 0. This occurs if the riskless rate is at or above the
expected rate of return on the minimum variance portfolio formed from the
index and the fund p, which corresponds to the top-point of the small hyper-
bolic curve in the figure. This resembles the situation where the riskless rate
is at or above the global minimum variance portfolio formed from the risky
securities, as analyzed for example in Huang and Litzenberger (1988).

Observe that alpha alone does not say how much the investor should opti-
mally invest in the fund. In other words, we cannot calculate ε̄, the optimal
value of ε, knowing only the value of alpha. The idiosyncratic variance of the
fund also matters. If the investor puts a too large fraction of his wealth into
the fund p, then the idiosyncratic risk may result in a lower Sharpe ratio and
a lower expected utility.
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The analysis above applies not only in a static model but also in a continuous-
time model, when the rates of return over a discrete time interval are replaced
by instantaneous rates of return. The Sharpe ratio will be replaced by a
instantaneous Sharpe ratio, and alpha will be replaced by an instantaneous
alpha, which we shall define in the following section.

5 The Instantaneous Alpha

In this section, we define the instantaneous alpha and derive a relation be-
tween the instantaneous and the discrete alphas.

Let Fx be the value of the index fund with dividends reinvested, and let Fp

be the value of the other fund with dividends reinvested. Assume that they
follow the processes

Fx(t) = Fx(0) exp
{∫ t

0

(
µx − 1

2
σ2

x

)
ds+

∫ t

0
σx dZx

}

and

Fp(t) = Fp(0) exp
{∫ t

0

(
µp − 1

2
σ2

p

)
ds+

∫ t

0
σp dZp

}

where µx and µp are the instantaneous expected rates of return, σx and σp are
the instantaneous volatilities or standard deviations of the rates of return,
and Z1 and Z2 are two potentially correlated standard Wiener processes with
correlation coefficient ρ.

The instantaneous alpha of the fund, denoted by αinst, is defined as

αinst = µp − r − βinst(µx − r)

where
βinst =

σpσxρ

σ2
x

=
σpρ

σx

The instantaneous alpha is effectively the discrete alpha with the rates of
return over finite time intervals replaced by instantaneous rates of return.

For the purpose of deriving a relation between the instantaneous and the
discrete alpha, assume that the interest rate varies in a deterministic manner,
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and that the correlation ρ, the volatilities σp and σx, and the instantaneous
expected excess rates of return µp − r and µx − r are constant.

The means of the continuously compounded rates of return rx and rp on x
and p over the time interval [t, t+ τ ] are

Erp = rf +mpτ

and
Erx = rf +mxτ

where

mx = µx − r − 1

2
σ2

x

and

mp = µp − r − 1

2
σ2

p

The variances and the covariance are

var(rp) = σ2
pτ

var(rx) = σ2
xτ

and
cov(rp, rx) = σpσxρτ

If the rates of return are expressed per period of length τ , then the discrete
Jensen’s alpha is

mpτ − cov(rp, rx)

var(rx)
mxτ = mpτ − σpσxρτ

σ2
xτ

mxτ = (mp − βmx)τ = ατ

where

β =
cov(rp, rx)

var(rx)
=
σpσxρτ

σ2
xτ

=
σpσxρ

σ2
x

= βinst

and
α = mp − βmx

is the discrete Jensen’s alpha based on annualized returns.
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By substituting the definitions of mp and mx into the definition of the in-
stantaneous alpha, we find the relation between the discrete alpha and the
instantaneous alpha:

αinst = α +
1

2

(
σ2

p − σpσxρ
)

It follows that the instantaneous Jensen’s alpha differs from the discrete
Jensen’s alpha by a bias equal to (σ2

p − σpσxρ)/2.

Like for the Sharpe ratios, it is important to recognize that (1) while the dis-
crete and instantaneous alphas do depend on whether returns are expressed
per day, per month, or per year, the ranking of portfolios that they produce
does not, (2) the relative size of the bias does not depend on whether re-
turns are expressed per day, per month, or per year, and (3) if the alphas are
estimated from data, then the importance of the bias is independent of the
frequency of the data.

To make points (1) and (2), we calculate the instantaneous alpha for returns
expressed per period of length τ , and then we express the bias as a fraction
of the discrete alpha.

Observe that the definition of the instantaneous alpha as

αinst = µp − r − βinst(µx − r)

is based on instantaneous returns per period of length one, say one year.
The instantaneous alpha corresponding to rates of return per time period of
length τ is

(µp − r)τ − βinst(µx − r)τ = αinstτ

It is clear that the rankings of funds produced by αinstτ and ατ are indepen-
dent of τ . This illustrates point (2). The size of the bias is

αinstτ − ατ =
1

2

(
σ2

p − σpσxρ
)
τ

which goes to zero as the length τ of the time interval goes to zero. However,
expressed as a fraction of the discrete alpha, the bias is

αinstτ − ατ

ατ
=
αinst − α

α
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which is independent of τ . This demonstrates point (2).

Finally, (3) if the alphas are estimated from data, then the same arguments
made for the instantaneous and discrete Sharpe ratios apply.

Similarly to the case of the instantaneous Sharpe ratio, the equation

αinst = α +
1

2

(
σ2

p − σpσxρ
)

expresses the instantaneous alpha in terms of discrete time moments of the
rates of return. This is useful when estimating it from data.

6 Conclusions

This paper has proposed modifications of the Sharpe ratio and Jensen’s alpha
which are consistent with expected utility maximization in a continuous-
time model. Specifically, the modifications take into account the fact that
investors may change the split of their wealth between the fund and the
riskless asset over time.

The theory assumes that the Sharpe ratios are constant, but it allows for
stochastically time-varying volatilities, which could arise for example from
a dynamic leverage strategy or from a strategy of buying contingent claims
such as puts and calls on an underlying portfolio.

The instantaneous Sharpe ratio does not necessarily deliver the same ranking
of funds as its discrete version. In fact, in the special case of constant volatil-
ity, we related these two versions and found that the instantaneous Sharpe
ratio penalizes a fund less for taking risk than does the discrete ratio.

We derived a precise interpretation of Jensen’s alpha in terms of optimal
portfolio choice by relating it to the Sharpe ratio. Specifically, a positive
alpha of a fund means that an investor who initially holds a benchmark
index fund can improve his Sharpe ratio by diverting a small fraction of his
wealth into the fund.

The modified performance evaluation criteria proposed in this paper have
been derived under the simplest possible assumptions. There is scope to ex-
plore the modifications to the theory required when the Sharpe ratios change
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over time. There is also scope to explore the estimation of all the perfor-
mance measures, in a way which would be consistent with theory, when the
volatilities and expected excess returns of the funds are not constant. Such
extensions go beyond the boundaries of this paper.
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7 Appendix: Formalities and Proofs

The investors’ information structure is represented by a filtration (Ft)t∈[0,T ]

on an underlying probability space (Ω,F , P ). The interpretation is that Ft

is the information set available to the investors at time t. Random fluctu-
ations in securities prices are driven by a K-dimensional process W , which
is a K dimensional Wiener process with respect to the filtration. Portfolio
strategies, and the instantaneous means and dispersions of value processes,
are assumed to be measurable and adapted to the filtration.

The proof of Proposition 1 relies on the following lemma:

Lemma 1 Suppose the interest rate r is deterministic. Let B be a one di-
mensional standard Brownian motion, and let FB be the augmented filtration
generated by B. Consider two funds whose price processes F and F̂ have dif-
ferentials

dF

F
= µ dt+ σ dW

and
dF̂

F̂
=

(
s2 + r

)
dt+ dB

where

s =
µ− r√
σσ�

is assumed to be constant. Given the investor’s utility function, the maximum
expected utility he can get from a portfolio strategy which involves only the
fund F and is adapted to F is the same as the maximum expected utility
he can get from a portfolio strategy which involves only the fund F̂ and is
adapted to FB.

Proof:

Set

φ =
s√
σσ� =

µ− r

σσ�

and
λ = φσ
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Then
λλ� = s2

Define a one-dimensional standard Brownian motion C by

C(t) =
∫ t

0

1

s
λ dW

and let FC be the augmented filtration generated by C. It follows from the
results in Nielsen and Vassalou (1997) that the optimal portfolio strategy
when trading the fund F has the form

q = aφ

where a is a process which is adapted to FC. A strategy of this form gives
the following dynamics of wealth:

dV

V
= (q(µ− r) + r) dt+ qσ dW

=
(
aφs

√
σσ� + r

)
dt+ aφσ dW

=
(
as2 + r

)
dt+ aλ dW

=
(
as2 + r

)
dt+ a dC

Consider the fund F φ which arises from trading the fund F using the portfolio
strategy φ. It has dynamics

dF φ

F φ
=

(
s2 + r

)
dt+ dC

The wealth dynamics arising from trading the fund F using the portfolio
strategy aφ is

dV

V
=

(
as2 + r

)
dt+ a dC

which is the same as the wealth dynamics arising from trading the fund F φ

using the portfolio strategy a. Hence, the maximum expected utility from
trading the fund F using portfolio strategies that are adapted to F is identical
to the maximum expected utility from trading the fund F φ using portfolio
strategies that are adapted to FC. The latter is obviously identical to the
maximum expected utility from trading the fund F̂ using portfolio strategies
that are adapted to FB.
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✷

Proof of Proposition 1:

Let B be a one dimensional standard Brownian motion, and let FB be the
augmented filtration generated by B. For each s, consider a fund whose price
processes F̂ [s] has differential

dF̂ [s]

F̂ [s]
=

(
s2 + r

)
dt+ dB

According to Lemma 1, given the investor’s utility function, the maximum
expected utility he can get from a portfolio strategy which involves only the
fund Fi and is adapted to F is the same as the maximum expected utility he
can get from a portfolio strategy which involves only the fund F̂ [Sinst,i] and
is adapted to FB. Therefore, what we need to show is that if Sinst,1 > Sinst,2,
then the maximum expected utility the investor can get from trading in the
fund F̂ [Sinst,1] with a portfolio strategy which is adapted to FB is strictly
larger than the maximum expected utility he can get from trading in the
fund F̂ [Sinst,2] with a portfolio strategy which is adapted to FB.

Let a be the optimal portfolio strategy when he trades the fund F̂ [Sinst,2].
Since this fund has constant instantaneous mean and dispersion, it is known
from Merton (1971) that a has the form

a = γ
µ2 − r

σ2σ�
2

= γ
Sinst,2√
σσ�

where γ > 0 is the relative risk tolerance of the investor’s utility function.
Hence, a > 0. If the investor uses the portfolio strategy a to trade the fund
F̂ [Sinst,i], then his wealth dynamics is

dVi

Vi
=

(
aS2

inst,i + r
)
dt+ a dB

The logarithm of his final wealth will be

lnVi(T ) = lnV (0) +
∫ t

0

(
aS2

inst,i + r − 1

2
a2

)
dt+

∫ t

0
a dB

Hence,

lnV1(T )− lnV2(T ) =
∫ t

0
a

(
S1

inst,i − S2
inst,i

)
dt > 0
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Therefore, the investor gets a strictly higher expected utility by using a to
trade the fund F̂ [Sinst,1] than by using it to trade the fund F̂ [Sinst,2].

✷

Proof of Proposition 2:

Let y denote the initial portfolio. Its rate of return is

ry = (1− ν)rf + νrx

The expected excess rate of return and variance of the new portfolio will be

Ery − rf + ε(Erp − Ery)

and
(1− ε)2var(ry) + ε2var(rp) + 2ε(1− ε)cov(ry, rp)

respectively, and the Sharpe ratio (or instantaneous Sharpe ratio) will be

S(ε) =
Ery − rf + ε(Erp − Ery)√

(1− ε)2var(ry) + ε2var(rp) + 2ε(1− ε)cov(ry, rp)

Set
E(ε) = Ery − rf + ε(Erp − Ery)

v(ε) = (1− ε)2var(ry) + ε2var(rp) + 2ε(1− ε)cov(ry, rp)

and
σ(ε) =

√
v(ε)

Then

S(ε) =
Ery − rf + ε(Erp − Ery)√

(1− ε)2var(ry) + ε2var(rp) + 2ε(1− ε)cov(ry, rp)
=
E(ε)

σ(ε)

To calculate S ′(0), first observe the following:

E(0) = Erp − Ery

v(0) = var(ry)
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σ(0) =
√
var(ry)

E ′(ε) = Erp − Ery

v′(ε) = −2(1− ε)var(ry) + 2εvar(rp) + 2(1− 2ε)cov(ry, rp)

v′(0) = −2var(ry) + 2cov(ry, rp)

σ′(ε) =
1

2

v′(ε)
σ(ε)

and

σ′(0) =
1

2

v′(0)
σ(0)

=
1

2

−2var(ry) + 2cov(ry, rp)√
var(ry)

=
−var(ry) + cov(ry, rp)√

var(ry)

Moreover,

Erp − rf +
cov(rp, ry)

var(ry)
(Ery − rf )

= Erp − rf

+
νcov(rp, rx)

ν2var(rx)
(νErx + (1− ν)rf − rf )

= Erp − rf +
1

ν
βν(Erx − rf)

= Erp − rf + β(Erx − rf)

= α

Now,

S ′(0) =
E ′(0)σ(0)− E(0)σ′(0)

v(0)

=
1

var(ry)


(Erp − Ery)

√
var(ry)− (Ery − rf)

−var(ry) + cov(rp, ry)√
var(ry)




=
1√

var(ry)

[
Erp − Ery + (Ery − rf)− (Ery − rf)

cov(rp, ry)

var(ry)

]

=
1

ν
√
var(rx)

[Erp − rf + β(Ery − rf)]

=
α

ν
√
var(rx)

✷
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