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Abstract

In the intertemporal portfolio selection model of Merton (1973), any change
in means, variances or covariances of security returns is sufficient to generate
a change in the investment opportunity set. Merton’s formulation suggests
that investors will hedge all such changes by including in their optimal portfo-
lio holdings as many hedge portfolios as there are state variables that describe
the dynamics of returns. In this paper, we show that investors need to hedge
only against changes in the random slope and position of the instantaneous
capital market line. If the instantaneous capital market line is constant or
deterministic, then investors will not hold any hedge portfolios at all, even
though means, variances and covariances of securities returns may be chang-
ing randomly over time. Based on these results, we propose a new definition
of the investment opportunity set and changes in the investment opportu-
nity set. Our analysis allows for incomplete markets and does not assume
that the securities prices are Markovian. It provides a potential theoretical
foundation for certain conditional tests of asset pricing models which ignore
the intertemporal hedging premia.

JEL classification: G11, G12

Keywords: portfolio optimization, incomplete markets, capital market line,
mutual fund separation



1 Introduction

This paper re-examines the role of hedge portfolios and the definition and
nature of the “investment opportunity set” in intertemporal portfolio selec-
tion.

According to Merton (1973) “a sufficient set of statistics for the [investment]
opportunity set at a given point in time” is the means, standard deviations
and correlations of the instantaneous rates of return to all the securities in
the model. Furthermore, “the dynamics for the changes in the opportu-
nity set over time” are given by a set of Itô processes that describe changes
in the instantaneous means and standard deviations and potentially in the
correlations, and which, together with the securities price processes, form a
Markovian vector of state variables1.

This definition implies that any change in means, variances or covariances
generates a change in the investment opportunity set. Merton’s formulation,
as well as the formulation in later papers such as Cox and Huang (1989), sug-
gests that investors will hedge all such changes by including in their optimal
portfolios as many hedge portfolios (“hedge funds” in Merton’s terminology)
as there are state variables that describe the dynamics of the returns.

We show that investors will only hedge against changes in instantaneous
means, variances and covariances of returns that affect the slope or position
of the instantaneous capital market line (ICML). They do not need to hedge
against changes in first and second moments which do not affect the intercept
or the slope of the ICML.

We conclude from these results that the ICML rather than all the means,
standard deviations, and correlations of instantaneous rates of return should
define the investment opportunity set. This dramatically reduces the dimen-
sionality of the portfolio selection problem.

These results are similar in spirit to those of Constantinides (1980). He iden-
tifies some circumstances in which investors will not hold hedge portfolios
even though some asset returns may be non-stationary, and in particular,
even though some assets may have stochastically time-varying means, vari-

1see page 483 in Merton (1992)
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ances, and correlations. Specifically, he shows that this is true in equilibrium
if the investors’ utility functions have the aggregation property and all assets
in postive supply have stationary returns. Our results do not assume equi-
librium or aggregating utility functions, and our assumptions about returns
concern only the dynamics of the ICML.

The capital market line (CML) has always played a central role in static
mean-variance portfolio theory. It would be graphed and used to visualize
the determination of the optimal portfolio. Merton (1971) showed that if
the interest rate and all the first and second moments are constant, then
the ICML has the same role in continuous time as the CML has in a static
model. However, the ICML has played no role in continuous time when
moments vary stochastically.

This created a dichotomy between the way we understood portfolio theory in
discrete and continuous time. Our results imply that the ICML plays the role
of the investment opportunity set also when the moments vary stochastically
over time.

Expressed in terms of the ICML, portfolio analysis in continuous time is as
intuitive as it is in discrete time. If the investment opportunity set is con-
stant or deterministic, then the investor will place himself along the ICML,
even if the moments of the security returns change randomly over time. He
will slide up and down the ICML over time as his wealth and his risk aver-
sion coefficient change. If not only the moments of the security returns but
also the intercept and slope of the ICML change randomly over time, then
the investor will typically hedge against those changes. To hedge against a
potential deterioration of the investment opportunity set, such as a decline
in the interest rate or in the slope of the ICML, he holds one or more hedge
portfolios which tend to do well in these scenarios. The opportunity cost
that he incurs is reflected in a deviation from instantaneous mean-variance
efficiency. In other words, he pays for the hedge portfolios by placing himself
below the ICML.

Our results can alternatively be stated in terms of the drift and volatility of
the state price process, because the drift and volatility are identical to the
(negative of the) intercept and the slope of the ICML. Investors hedge only
against changes in instantaneous means, variances and covariances that affect
the drift or volatility of the state price process. If the drift and volatility of
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the state price process are deterministic, then investors do not need to hedge
at all. Thus, our analysis adds yet another aspect to the role of the state
price process.

Our results are derived within a model where markets may be dynamically
incomplete because the number of sources of uncertainty may be larger than
the number of risky assets2. This is the type of market incompleteness ana-
lyzed by He and Pearson (1991) and Karatzas et al. (1991). In general, an
optimal portfolio strategy may not even exist in such a model. However, we
are able to give plausible conditions for existence, and we can characterize the
optimal strategy. The expressions for the optimal portfolios in incomplete
markets are the same as those in complete markets. This greatly simplifies
the analysis of this type of incomplete markets.

Our analysis also has some implications for empirical asset pricing. First,
given our new definition of the investment opportunity set, one should be
cautious in interpreting empirical evidence of predictability as implying that
the investment opportunity set is changing over time. Security returns and
their moments may well be predictable while the investment opportunity set
is constant.

Secondly, our analysis provides a theoretical justification for ignoring the
intertemporal hedging premia in conditional asset pricing tests, when these
explicitly or implicitly assume a constant ICML.

Our modeling approach is closely related to an optimal portfolio selection
result of Chamberlain (1988). We follow Chamberlain in assuming that the
state variables form a Wiener process. However, Chamberlain’s other as-
sumptions and their economic interpretation differ from ours. He did not
make assumptions about hedge portfolios or about the slope of the ICML.
He assumed that the interest rate is zero, that every claim which is a function
of the final value of the state price process is marketed, and that this final
value is a function of the paths of the state variable. Furthermore, Chamber-
lain did not express his optimal portfolio selection result (in his Lemma 3)
in terms of funds but in terms of martingales and stochastic integrals: “the
value of an optimal portfolio is restricted to be a stochastic integral over a
single (vector) martingale [. . . ], which is common to all optimal portfolios.”

2Note that this type of market incompleteness differs from that which results from
non-traded assets or stochastic labor income.
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Thus the economic content of Chamberlain’s paper is different from ours,
even though the mathematics is similar. Chamberlain was not concerned
with the capital market line or the investment opportunity set, which are
the crucial concepts in the present paper. He motivated his assumptions by
relating them to factor models and the APT. These ideas do not play any
role here.

Our economic results also rely on some modeling innovations. First, we find
that in order to express the optimal portfolios in terms of intertemporal hedge
portfolios, it is not necessary to assume that the interest rate and the mean
vector and dispersion matrix of the instantaneous returns are functions of a
vector of state variables, as in Merton (1973), Cox and Huang (1989), and
the subsequent literature. It suffices to assume that the interest rate and
the slope of the ICML satisfy such a condition. Moreover, they need only be
functions of the paths, not the levels, of the state variables.

Secondly, to get the hedging portfolios to disappear, it is not necessary to
assume that the interest rate and the mean vector and dispersion matrix
of the instantaneous returns are deterministic. It is not even necessary to
assume that the interest rate and the vector of prices of risk are deterministic.
It suffices to assume that the interest rate and the slope of the ICML are
deterministic.

Ocone and Karatzas (1991) show that if markets are complete, and if the
interest rate and the vector of prices of risk are deterministic, then investors
do not need to hedge. However, their assumption that the prices of risk are
deterministic is stronger than our assumption that the slope of the ICML
is deterministic. Furthermore, their result cannot be recast in terms of the
slope of the ICML or the volatility of the state price process, and thus it
cannot be used to establish the ICML as the investment opportunity set.

One might conjecture that our results (in the case of complete markets)
would follow as a special case from those of Merton (1973) and Cox and
Huang (1989). This is not so. Those papers express the holdings of the hedge
portfolios in terms of the derivatives with respect to the state variables of an
indirect utility function or a value function. To derive our results from theirs,
one would need to know that the derivative with respect to a state variable is
zero if that state variable does not affect the ICML. However, little is known
about the shape of the indirect utility function or the value function, and in

4



particular, there is in general no closed-form expression for its derivatives.

The rest of the study is organized as follows. Section 2 outlines the model.
In Section 3 we define the ICML. Section 4 discusses trading and portfolio
strategies and the expected utility they generate. Section 5 provides our fund
separation result for the case where changes in the position and slope of the
ICML are described by a vector of state variables. Section 6 considers the
case where the ICML is either deterministic or constant. We conclude in
Section 7. A detailed derivation of the results is provided in the appendix.
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2 Prices of Risk

We use a standard continuous-times model on a finite time horizon is [0, T ].
Underlying the model is a probability space (Ω,F , P ) with a filtration F =
(Ft)t∈[0,T ]. There are N + 1 basic long-lived securities. Security zero is a
money market account with price process M

M(t) = M(0) exp
{∫ t

0
r ds

}

where M(0) > 0 and r is the interest rate process, which is assumed to be
measurable, adapted, and pathwise locally integrable with respect to time.

The prices of the remaining N securities are given by an N -dimensional
vector S of Itô processes of the form

dS = D(S)µ dt+D(S)σ dW

where D(S) is the diagonal matrix with the vector S along the diagonal. The
process µ is N -dimensional and is assumed to be measurable, adapted, and
pathwise locally integrable with respect to time. The process σ is (N ×K)-
dimensional and is assumed to be measurable, adapted, and pathwise locally
square integrable with respect to time. These processes are not assumed to
be functions of a Markovian vector of state variables.

The process W is a K-dimensional Wiener process. Markets may be incom-
plete, in the sense that there may be many more Wiener processes than there
are instantaneously risky securities (K � N).

A vector of prices of risk is a K-dimensional measurable and adapted process
λ which is pathwise locally square integrable, such that

µ− rι = σλ�

Without loss of generality, we can always choose the so-called minimal prices
of risk, which are given by

λ = (µ− rι)�
(
σσ�)−1

σ

With this choice, we find that

λλ� = (µ− rι)�
(
σσ�)−1

σσ� (
σσ�)−1

(µ− rι)

= (µ− rι)�
(
σσ�)−1

(µ− rι)
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Assuming that this process is pathwise locally integrable, λ will be pathwise
locally square integrable, as required.

A state price process or pricing kernel for S̄ is a positive one-dimensional Itô
process Π such that

dΠ

Π
= −r dt− λ dW

where r is a vector of prices of risk.

3 The Instantaneous Capital Market Line

Recall from mean-variance theory that mean-variance efficient portfolios are
portfolios that maximize the expected rate of return given the variance or
standard deviation of the rate of return. We can similarly define instan-
taneously efficient portfolios as those that maximize the expected instanta-
neous rate of return given the standard deviation of the instantaneous rate
of return. Their combinations of standard deviation of returns and expected
returns plot on a straight line whose intercept with the expected-return axis
is the instantaneous interest rate. We call this line the instantaneous capital
market line (ICML).

It follows from the standard theory that the instantaneously efficient port-
folios are the portfolios that are combinations of the money market account
and the portfolio φln given by

φln = λσ� (
σσ�)−1

= (µ− rι)�
(
σσ�)−1

where we note that σσ� is the covariance matrix of the instantaneous rates
of return to the various securities. We call this portfolio the logarithmic
portfolio because, as is well known and will also follow from the analysis
below, it is indeed the optimal portfolio for an investor with a logarithmic
utility function.

Given the specific choice we have made for the prices of risk λ,

λ = (µ− rι)�
(
σσ�)−1

σ = φlnσ
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The slope of the capital market line is the ratio of excess expected instanta-
neous rate of return and the standard deviation of the instantaneous rate of
return to the logarithmic portfolio. We can calculate this slope as follows.

The excess instantaneous expected rate of return to φln is

φln(µ− rι) = (µ− rι)�
(
σσ�)−1

(µ− rι) = λλ�

The variance of the instantaneous rate of return to φln is

φlnσσ�φln� = λλ�

and the standard deviation is
√
λλ�. Hence, the slope of the ICML is

φln(µ− rι)√
φlnσσ�φln�

=
λλ�
√
λλ� =

√
λλ�

It follows that the ICML is the straight line with intercept r and slope
√
λλ�.

While the individual elements of the vector λ are prices of risk with respect
to the individual Wiener processes,

√
λλ� is the price of risk in the aggregate.

We can also think of it as the instantaneous Sharpe ratio for instantaneously
mean-variance efficient portfolios. It also happens to be the volatility of the
state price process.

In the following, we prove that investors will optimally hedge only changes
in moments that lead to changes in the slope and position of the ICML. We
shall therefore argue that for the purpose of optimal portfolio selection, the
instantaneous capital market line is the most useful concept of the “invest-
ment opportunity set.”

4 Trading and Expected Utility

A trading strategy is an adapted and measurable process ∆̄ = (∆0,∆) whose
values are (N+1)-dimensional row vectors. The value process of ∆̄ is ∆0M+
∆S.

A trading strategy ∆̄ is self-financing if it satisfies the budget constraint :

∆0(t)M(t) + ∆(t)S(t) = ∆0(0)M(0) + ∆(0)S(0) +
∫ t

0
(∆0 dM +∆ dS)
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A portfolio strategy is an adapted measurable N -dimensional row vector val-
ued process θ̃. The interpretation is that θ̃ tells us the fractions of wealth
invested in the various risky securities, while the remaining fraction, 1− θ̃ι, is
invested in the money market account. Here, ι is the N -dimensional column
vector all of whose entries are one.

A trading strategy with positive value process can conveniently be expressed
as a portfolio strategy. If ∆̄ = (∆0,∆) is a self-financing trading strategy
such that the value process V = ∆̄S̄ is positive, then the corresponding
portfolio strategy is given by

∆̃ = ∆D(S)/V
Conversely, we can recover the value process and the trading strategy from
knowledge of the portfolio strategy and the initial value w0 = ∆0M(0) +
∆(0)S(0) of the trading strategy.

In order to keep things simple, we restrict ourselves to a model with a finite
time horizon T and with only final consumption3.

Let w0 > 0 be the investor’s initial wealth level, and let u be his utility
function, defined on the positive half-line (0,∞). If he follows a portfolio
strategy ∆̃, then his expected utility will be Eu(∆̄(T )S̄(T )), where ∆̄ is the
unique self-financing trading strategy corresponding to w0 and ∆̃.

5 Fund Separation: Random ICML

We model random changes in the ICML as driven by a number of state
variables which are independent Wiener processes relative to the filtration
F . We assume that the slope and intercept of the ICML are functions of the
paths of the state variables (technically, they are measurable and adapted to
the filtration generated by the state variables), but we do not assume that
they are functions of the current levels of the state variables4.

3We expect that as is usually the case in models like this, the results can be generalized
to a model with a flow of consumption over time and with a finite or an infinite time
horizon.

4Merton (1973) assumed that the state variables followed a multi-dimensional diffusion
process. Our assumption, that they follow an m-dimensional Wiener process, is not as
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This way of using state variables is inspired by Chamberlain (1988). Indeed,
our proposition below is a version of Chamberlain’s mutual fund separation
result, but with a different set of assumptions and formulated in terms of the
logarithmic portfolio, the hedge portfolios, and the intercept and slope of the
ICML5.

The state variables will be assumed to be hedgeable in the following sense.
If B is an m-dimensional Wiener process relative to the filtration F , then we
say that B is hedgeable if there exists an (m × N)-dimensional measurable
and adapted process b such that bσ ∈ L2, bσσ�b� = I, the m × m identity
matrix, and

B(t) =
∫ t

0
bσ dW

We interpret b as a vector of m portfolio strategies which are perfectly in-
stantaneously correlated with the elements of B. We call them the hedge
portfolios associated with B.

A portfolio strategy ∆̃ will be said to be a combination of the hedge portfolios
if it has the form

∆̃ = βb

for some (1×m)-dimensional measurable and adapted process β, called the
coefficient process.

Proposition Let B be an m-dimensional Wiener process relative to F .
Assume that

1. B is hedgeable with associated hedge portfolios b

2. The logarithmic portfolio φln = (µ− rι)�
(
σσ�

)−1
is a combination of

the hedge portfolios, with a coefficient process which is measurable and
adapted with respect to FB

restrictive as it may seem. An m-dimensional diffusion process can, under appropriate
regularity conditions, be seen as driven by an m-dimensional Wiener process. If the
diffusion coefficient is a continuous function, then the diffusion and the Wiener process
generate the same filtration, as shown by Harrison and Kreps (1979).

5The case of a deterministic ICML, where Π(T ) is lognormally distributed, is not
covered by Chamberlain’s analysis. He assumes that Π(T ) (or ρ in his notation) is bounded
above and below away from zero.
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3. The intercept and slope of the ICML are measurable and adapted with
respect to FB

Then for each initial wealth level w0 > 0 and each portfolio strategy Θ̃, there
exists a portfolio strategy ∆̃ which is a combination of the hedge portfolios,
such that every risk-averter with initial wealth w0 will prefer ∆̃ to Θ̃.

The proposition implies that if there exists an optimal portfolio strategy
for an investor, then there exists one which is a combination of the hedge
portfolios. If there is a unique optimal portfolio strategy, then the optimal
portfolio strategy is a combination of the hedge portfolios.

There is a detailed proof of the proposition in the appendix. The proof uses
the following steps. We build a reduced trading model driven by B and
FB, with the same money market account as the original model and m risky
securities with values equal to the values of the hedge portfolios. This reduced
model has complete markets. The interest rate and the slope of the ICML
are the same in the reduced model as in the original model. Since they are
adapted and measurable with respect to FB, it follows that the state price
process is also the same in the reduced model as in the original model. Given
the claim Y replicated by Θ̃, we define a claim Y ∗ by Y ∗ = E(Y | Π(T )).
This claim is preferred to Y by every risk averter, because it has the same
mean as Y but is less risky. It can be replicated within the reduced model,
which has complete markets, and hence it can be replicated by a portfolio
strategy which is a combination of the hedge portfolios.

Remark: Suppose the interest rate and the slope of the ICML are functions
of the paths of a subset of the state variable processes (including the first of
them). Then the remaining state variables are superfluous in the sense that
they do not affect the slope and intercept of the ICML and that investors will
not hold the associated hedge portfolios. Investors will only hold the money
market account, the logarithmic portfolio, and hedge portfolios that hedge
against changes in the slope and the position of the ICML.

Our proposition and its associated remark simplify Merton’s separation the-
orem, since they reveal that it is not necessarily optimal to hedge all changes
in the instantaneous means, variances and covariances.

The proposition also leads us to redefine the concept of an investment op-
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portunity set provided in Merton (1973), and consequently, the concept of
changes in the investment opportunity set.

Definition: The investment opportunity set is the instantaneous capital mar-
ket line. Changes in the investment opportunity set are described by changes
in the intercept and slope of the instantaneous capital market line.

This analysis indicates that the capital market line is as important in con-
tinuous time as it is in discrete time.

An attractive special case of the second assumption in the proposition is
where the logarithmic portfolio is proportional to one of the hedge portfolios,
say the first. Mathematically, this means that there exists a positive process
η such that φln = ηb1. This process is automatically measurable and adapted
with respect to FB, because

√
λλ� =

√
φlnσσ�φln� =

√
ηb1σσ�b�1 η =

√
η2 = η

Our proposition allows for market incompleteness, because the number of
risky securities may be larger than the number of sources of risk. As men-
tioned earlier, this potential market incompleteness is of exactly the same
type as in Karatzas et al. (1991) and He and Pearson (1991). Those papers
analyze various conditions for existence of an optimal trading strategy, which
is not a simple matter. By contrast, in models with complete markets, exis-
tence of an optimal trading strategy is relatively straightforward. It can be
ensured by imposing an appropriate integrability condition on the state price
process and bounding the investor’s relative risk aversion away from zero at
high wealth levels.

Our proposition above and the corollary below reveal that the existence of an
optimal portfolio strategy is equally straightforward in incomplete markets,
provided that the capital market line either is driven by hedgeable state
variables or is deterministic. Existence can be ensured by the same conditions
on the state price process and the utility function as in a complete market,
because these conditions will imply the existence of an optimal portfolio
strategy in the reduced trading model constructed from the hedge portfolios,
which has complete markets.

Notice that under the assumptions of our proposition, the optimal portfo-
lio holdings will have the same form whether the markets are complete or
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incomplete.

The proposition does not require that all the instantaneous means, variances
and covariances of the securities prices are driven by the state variables.
Only the slope and intercept of the ICML are assumed to be driven by the
state variables. Furthermore, they do not need to be functions of the state
variables, they only need to be functions of their paths. Subject to this
requirement, the instantaneous moments of the securities returns can follow
general processes.

6 Fund Separation: Deterministic ICML

The following corollary says that when the ICML is deterministic or constant,
investors do not at all hedge against changes in the first and second moments
of security returns. As in the proposition, the moments do not have to be
functions of the levels or the paths of the state variables. They are allowed
to vary randomly over time. The only restriction imposed on the dynamics
of returns is that the interest rate and the slope of the ICML should be
deterministic.

Corollary Assume that the interest rate is deterministic and that the slope
of the ICML is positive and deterministic. Then for each initial wealth level
w0 > 0 and each portfolio strategy Θ̃, there exists a portfolio strategy ∆̃ which
is proportional to the logarithmic portfolio, such that every risk averter with
initial wealth w0 will prefer ∆̃ to Θ̃.

The corollary, like the proposition, implies that if there exists an optimal
portfolio strategy for an investor, then there exists one which is a combination
of the hedge portfolios. If there is a unique optimal portfolio strategy, then
the optimal portfolio strategy is a combination of the hedge portfolios.

The proof of the corollary is provided in the appendix. The idea of the proof
is to define a Wiener process B by

B(t) =
∫ t

0

1√
λλ�λ dW

We show that B is hedgeable with a hedge portfolio which is proportional to
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the logarithmic portfolio, and then we appeal to the proposition.

The statement that ∆̃ is proportional to the logarithmic portfolio means that

∆̃ = αφln

for some one-dimensional measurable and adapted process α. The value
weight invested in the logarithmic portfolio is given by α. It can be shown
that α equals the relative risk tolerance of the investor’s indirect utility func-
tion. This follows from the fund separation theorem in Merton (1973) for
the case of constant moments, and from the corollary.

Note that the ICML will be constant if and only if the state price process has
constant relative drift and volatility. This is so because the state price process
has relative drift −r and volatility

√
λλ�, while the ICML has intercept r

and slope
√
λλ�.

Even with a constant capital market line, the value weight α invested in the
logarithmic portfolio will in general change over time in response to changes
in the investor’s wealth and resultant changes in the risk aversion of his
indirect utility function. Changes in α can be interpreted as sliding up and
down the ICML.

For an investor with logarithmic utility, the optimal portfolio strategy is the
logarithmic portfolio strategy φln. That was why we used that name for it,
of course.

In the remainder of this section, we shall discuss the significance of the corol-
lary and the degree to which its assumptions are reasonable.

Apart from (1) the case of logarithmic utility, the only previously known re-
sults that we are aware of where all investors will simply invest in the money
market account and the logarithmic portfolio are (2) Merton’s (1973) exam-
ple where all moments are constant, (3) Constantinides’ (1980) Proposition 1
which assumes aggregating utility functions, equilibrium, and stationary re-
turns to all assets in positive net supply, (4) an example in Karatzas et al.
(1991) which assumes power utility, complete markets, a deterministic inter-
est rate r, and a deterministic vector λ of prices of risk; and (5) an example
in Ocone and Karatzas (1991), which also assumes complete markets, a de-
terministic interest rate r, and a deterministic vector λ of prices of risk.
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The corollary generalizes all of these results, because it only assumes that
the utility function exhibits risk aversion, and it allows σ, µ and λ to change
randomly over time, so long as the relation

µ− rι = σλ�

is satisfied and r and λλ� remain deterministic.

If there are one thousand risky securities, then the case of constant moments
requires the constancy of 501,500 parameters, because this is the number
of free parameters in the instantaneous excess return vector µ − rι and the
instantaneous covariance matrix σσ�. The corollary imposes only a two-
dimensional restriction on these parameters: the intercept and slope of the
ICML should be constant (or equal to deterministic functions of time). In
this sense, the corollary has 501,498 more degrees of freedom than the case
of constant moments.

A special case of the corollary is where the interest rate and the slope of
the ICML are constants. A constant slope

√
λλ� does not require that the

elements of λ stay constant. They may change according to virtually any
adapted processes so long as their sum-of-squares is constant. At the same
time, all the elements of the matrix σ may change in virtually any non-
anticipating way so long as the matrix continues to have full rank. The
example below illustrates this. In the example, the elements of λ change
randomly because of changes in the vector of instantaneous means, while the
elements of σ remain constant.

Example 1 Suppose N = K. Suppose the interest rate r > 0 and the
matrix σ are deterministic constants. Let x ∈ IRK , x �= 0, and suppose

µ = rι+
1

‖W + x‖σ(W + x)

Then

λ =
1

‖W + x‖(W + x)�

and λλ� = 1. According to the proposition, the optimal portfolio is propor-
tional to the logarithmic portfolio. Although the instantaneous means vary
over time in a highly random manner, investors will not hold hedge portfolios
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to hedge against these changes. Even so, the composition of their portfolio
will change stochastically over time, since we find

φln = λσ−1 =
1

‖W + x‖(W + x)�σ−1

✷

We can well generate other instances of securities price processes which have
a constant ICML. The following example exhibits a class of processes where
the second moments are random and the vector λ is constant.

Example 2 Consider any process for the dispersion matrix σ. Let it incor-
porate any kind of time-varying conditional second moments that may be
considered suitable or used in the empirical literature of conditional asset
pricing, such as ARCH or GARCH. Let λ be a constant vector, and define
the instantaneous mean return processes µ by

µ = rι+ σλ�

or
µi − r = σi1λ1 + σi2λi2 + · · ·+ σiKλK

for each security i. Then the ICML is constant. ✷

The assumption of a constant ICML is consistent with specifications that
have been used or proposed for empirical work. The assumption means
that portfolios on the ICML have expected rates of return that are an affine
function of their standard deviation. Combined with a partial equilibrium
argument, it implies that the market portfolio is on the ICML, and therefore
that its expected rate of return is an affine function of its standard deviation.

This is consistent with Merton (1980), who proposed the assumption of a
constant capital market line as one of his empirical models for estimating
the expected return to the market.

It is also consistent with some of the literature on applications of ARCH-M
and GARCH-M processes. These processes model the expected excess rate
of return to a security or to the market portfolio as a function of its standard
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deviation or variance, in addition to modeling the dynamics of the second
moments.

For example, French, Schwert and Stambaugh (1987) tested two versions of
GARCH-M, where the excess expected rate of return to the market port-
folio is an affine function of either the standard deviation or the variance.
Bodurtha and Mark (1991) compared three versions of the ARCH-M model,
where the excess expected rate of return on the market portfolio is an affine
function of either the variance, the standard deviation, or the logarithm of
the variance. In both cases, the specification where the expected rate of
return to the market is an affine function of the standard deviation corre-
sponds to our assumption in the corollary of a constant ICML, combined
with a partial equilibrium argument to ensure that the market portfolio is
on the ICML.

An implication of our definition of the investment opportunity set as the
ICML is that security returns and their moments may be predictable while
the investment opportunity set is constant. Thus, one should be cautious in
interpreting empirical evidence of predictability as implying that the invest-
ment opportunity set is changing over time.

The corollary potentially provides a theoretical framework for asset pric-
ing tests with time-varying conditional moments which ignore intertemporal
hedging premia. For example, Dumas and Solnik (1995) explicitly acknowl-
edge that such tests are inconsistent with the standard theory. The corollary
provides a theoretical justification for ignoring the intertemporal hedging
premia in conditional asset pricing tests. However, empirical specifications
which violate the assumption of a constant (or deterministic) ICML can still
not be justified by appeal to our corollary.

7 Conclusions

This study has reexamined the role of intertemporal hedge portfolios in op-
timal portfolio selection. We showed that only changes in the slope and
position of the instantaneous capital market line (ICML) give rise to hedge
portfolios. Hedge portfolios that hedge against changes in moments that do
not lead to changes in the position and slope of the ICML are superfluous.

17



This result simplifies the fund separation theorem of Merton (1973).

Because of our finding that investors hedge only against changes in the ICML,
we proposed a new definition of the concept of an “investment opportunity
set,” according to which the investment opportunity set is identical to the
ICML. With this definition, predictability in returns does not automatically
constitute evidence of a changing investment opportunity set.

It is common in the empirical asset pricing literature to allow for randomly
time-varying moments of the returns to securities or to the market portfolio,
while ignoring the intertemporal hedging premia that should be present in the
specification according to Merton (1973). Our analysis provides a theoretical
framework for some of these tests. A constant or deterministic ICML implies
that the intertemporal hedging premia disappear. Therefore, they can be
ignored in empirical tests whose specification is consistent with a constant
or deterministic ICML.

All of our results allow for the type of market incompleteness studied in
He and Pearson (1991) and Karatzas et al. (1991). We found that market
incompleteness does not matter so long as changes in the position and slope
of ICML are driven by a vector of hedgeable state variables, one of which
is proportional to the logarithmic portfolio. Market incompleteness does
not upset the existence and uniqueness of an optimal portfolio or affect its
composition.
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Appendix

In this appendix, we prove the proposition and the corollary.

The propsition follows from Lemmas 2 and 3 below. Lemma 1 will be used
in the proof of Lemma 2.

Lemma 1 Under the assumptions of the proposition, λσ�b� is measurable
and adapted with respect to FB, and

dΠ

Π
= −r dt− λσ�b� dB

In particular, Π(T ) is measurable with respect to FB
T .

Proof: By assumption, there exists a (1×m)-dimensional process η, mea-
surable and adapted with respect to FB, such that φln = ηb. The vector of
prices of risk is

λ = φlnσ = ηbσ

and so
λσ�b� = ηbσσ�b� = η

Now,

dΠ

Π
= −r dt− λ dW = −r dt− ηbσ dW = −r dt− λσ�b� dB

It follows that Π is an Itô process with respect toB and FB, and in particular,
Π(T ) is measurable with respect to FB

T . ✷

Lemma 2 Under the assumptions of the proposition, any claim Y ∗ which
is measurable with respect to FB

T and such that Π(T )Y ∗ is integrable, can be
replicated at an initial cost w0 given by Π(0)w0 = E(Π(T )Y ∗), by a portfolio
strategy ∆̃ which is a combination of the hedge portfolios.

Proof: For k = 1, . . . , m, let bk− denote the k’th row in b, and let Φ be
the m-dimensional column vector valued process whose k’th element Φk is
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the value process of the portfolio strategy bk−, assuming an initial value of
Φk(0) = 1. Then

dΦ = D(Φ)
[(
bσλ� + rι

)
dt+ bσ dW

]

= D(Φ)
[
(η + r, r, . . . , r)� dt+ dB

]

The process Φ is adapted and measurable with respect to FB.

Consider the reduced economy driven by B and FB, where the risky asset
prices are Φk, k = 1, . . . , m and the money market account is the same as in
the original economy. In the reduced economy, the vector of prices of risk is
(η, 0, . . . , 0), and the state price process is Π, like in the original economy.

Since the reduced economy has dynamically complete markets, there exists
a self-financing trading strategy γ̄ = (γ0, γ) in the reduced economy which
replicates Y ∗ and whose value process

V = γ0M + γΦ

has the property that ΠV is a martingale with respect to FB. Since Y ∗ and
Π are positive, the value process V is positive. Since ΠV is a martingale, in
particular,

Π(0)V (0) = E[Π(T )V (T )] = E[Π(T )Y ∗]

and so V (0) = w0.

Now let β be the portfolio strategy in the reduced economy corresponding to
the trading strategy γ̄:

β = γD(Φ)/V
and let ∆̃ be the portfolio strategy in the original economy given by ∆̃ = βb.
It is then easily seen that if ∆̃ is started off at the initial wealth level w0 =
V (0), then its value process is V , and, hence, it replicates Y ∗ in the original
economy. ✷

Lemma 3 If Y > 0 is a claim such that Y is measurable with respect to FT

and Π(T )Y is integrable, then there exists a claim Y ∗ > 0, measurable with
respect to FB

T , such that Π(T )Y
∗ is integrable, E(Π(T )Y ∗) = E(Π(T )Y ), and

E(Y | Y ∗) = Y ∗.
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Proof: Simply set Y ∗ = E(Y | Π(T )). Then Y ∗ is measurable with respect
to Π(T ), and, hence, E(Y | Y ∗) = E[E(Y | Π(T )] | Y ∗] = E[Y ∗ | Y ∗] = Y ∗.
✷

The proposition can now be proved from Lemmas 2 and 3, as follows. Let
Y be the claim replicated by the portfolio strategy Θ̃, starting from initial
wealth w0. Let Y ∗ be a claim as in Lemma 3. By Lemma 2, Y ∗ can be
replicated at initial cost w0 by a portfolio strategy ∆̃ which is a combination
of the hedge portfolios.

If u is a risk-averse (concave) utility function such that u(Y ∗) is integrable
above, then it follows from Jensen’s inequality that u(Y ) is also integrable
above, and Eu(Y ) ≤ Eu(Y ∗):

Eu(Y ) = E[E(u(Y ) | Y ∗)] ≤ E[u(E(Y | Y ∗))] = Eu(Y ∗)

Therefore, every risk averter with initial wealth w0 will prefer the portfolio
strategy ∆̃ to the portfolio strategy Θ.

Proof of the corollary:

Set m = 1,

b =
1√
λλ�λσ� (

σσ�)−1
=

1√
λλ�φln

Then

bσ =
1√
λλ�λσ� (

σσ�)−1
σ =

1√
λλ�λ

and

bσσ�b� =
1√
λλ�λλ� 1√

λλ�λ = 1

Define B by

B(t) =
∫ t

0
bσ dW =

∫ t

0

1√
λλ�λ dW

Then B is a Wiener process relative to the filtration F , and B is hedgeable
with hedge portfolio b. The logarithmic portfolio is proportional to b, since

φln =
√
λλ�b

Since r and
√
λλ� are deterministic, they are adapted and measurable with

respect to FB. The result now follows from the proposition.

✷
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